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In some electromagnetic finite-element applications, using a mesh that is not fitted to the geometry of the analyzed objects can 
provide substantial advantages over a standard fitted mesh in that, for example, moving objects are efficiently handled with no mesh 
reconstruction. Unfortunately, an unfitted mesh around the interfaces generally leads to a large numerical error. In this study, we 
present an enhanced version of the interface homogenization technique, which is a recently proposed technique that improves the 
accuracy of the unfitted finite element analysis, to enable anisotropic media to be handled. 
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I. INTRODUCTION 
N finite element (FE) analysis for electromagnetic problems, 
to handle accurately various geometries of the analyzed ob-

jects, one generally generates a mesh (computational grid) that 
is precisely fitted to the interfaces of the different media (Fig. 
1(a)). However, using an unfitted mesh (Fig. 1(b)) can provide 
several advantages in that, for example, one can handle mov-
ing interfaces with no mesh reconstruction, or that it becomes 
possible to use a structured mesh, which significantly reduces 
the cost of mesh generation. Because an unfitted mesh, as 
might be expected, reduces the accuracy of the analysis, an 
effort has been made to analyze or improve the accuracy of 
unfitted FE analysis [1]–[4]. 

We recently proposed a new technique, called interface ho-
mogenization (IH) [5], for improving the accuracy of unfitted 
FE analysis. The IH technique provides an optimum represen-
tation for the fields that are uniform in each material, and re-
quires no modification of the FE algorithm, except for the 
manner in which the material properties are determined. The 
test analyses in [5] suggest that the IH technique can achieve 
an optimal order convergence of the FE solution when the 
unfitted interfaces are sufficiently smooth. 

Whereas [5] presents a concrete procedure of the IH tech-
nique with the proviso that all media in the analysis domain 
are isotropic, it is not straightforward to extend the technique 
for anisotropic media. In this study, we present a more orga-
nized procedure of the IH technique, and thereby enable aniso-
tropic media to be handled. 

II. FE ANALYSIS 
For ease in explanation, consider the two-dimensional elec-

trostatic problem where the electric scalar potential is given by 
φ = φ (x, y) and there is no electric charge in the analysis do-
main. The technique described below, however, can be applied 
to two-dimensional/three-dimensional magnetostatic analysis 
involving magnetic anisotropy, in almost the same manner. 

The basic equation of the problem is 
( ) 0=∇⋅∇− φε , (1) 

where ε is the electric permittivity. Anisotropic media may be 
present in the analysis domain. 

The standard FE formulation for (1) leads to a linear system 
of equations: 

fφ =K , (2) 
with a coefficient matrix denoted by K, unknowns by ϕ, and a 
right-hand-side vector by f. The elements of f are zero, except 
for the terms relating to the boundary conditions. The entries 
of K are given by 

[ ] ( )dΩNNK jiij ∫ ∇⋅∇= ε . (3) 

Here, Ni denotes the FE shape function, which is assumed to 
be first order. The FE solution is given by φ FEM = ΣφiNi, where 
φi (i-th entry of ϕ) gives the approximation of φ at i-th node. 

III. INTERFACE HOMOGENIZATION FOR ANISOTROPIC MEDIA 
According to [5], consider a simple situation of a flat inter-

face formed between two different media and the electric 
fields are uniform in each of the two media. Because a more 
general situation locally approaches this simple situation 
through mesh refinement, the accuracy of the FE analysis for 
the latter has a significant effect on the convergence of the FE 

I 

           
(a) Fitted mesh                                  (b) Unfitted mesh 

Fig. 1. Fitted and unfitted meshes. 
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Fig. 2. Unfitted element that lies across a material interface. 
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solution. Unfortunately, despite the simplicity of the situation, 
the standard FE analysis can produce large errors around the 
interface, unless the mesh used is fitted to the interface [5]. 
The IH technique presented below gives a remedy to this 
problem. 

Fig. 2 shows an unfitted element on a material interface. 
Our goal is to determine the homogenized electric permittivity 
of the unfitted element, so as to guarantee that, in the simple 
situation mentioned above, the FE analysis provides the exact 
solution (in exact arithmetic). 

Let the line segment 
( ) 0, =++= rqypxyxl  (4) 

be the material interface. The electric field strength and elec-
tric flux density are written 
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with the electric permittivity 
( )
( )




<
>

=
−

+

0
0

l
l

ε
ε

ε . (6) 

The standard FE calculation obtains the electric field within 
the element using 
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with 
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Here, (xi, yi) denote the coordinates of the three nodes. 
Assuming φi is equal to the exact potential that is consistent 

with (5), if 

( ) dΩNdΩN
e

i

e

i ∫∫ ⋅∇=⋅∇ DE FEMe  (10) 

is satisfied in each element, (2) holds exactly for the simple 
situation (In other words, the FE and the exact solutions are 
identical). Note that, in the simple situation, the vector assem-
bly of the right-hand side of (10) invariably results in zero. 

One can ensure (10) by determining the homogenized elec-
tric permittivity as below (In this short paper, we omit signifi-
cant details of the calculation.): 
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with 
( ) SSS nntnnntn

−−−+++ += εεεεα , (12) 

( ) ( )[ ] SSS nntnntttnntnnttt
−−−−−+++++ −+−= εεεεεεεεβ , (13) 
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Here, ε i is the electric permittivity of the medium in which 
node i lies, the subscripts n and t signify the tensor compo-
nents in the local coordinate system for which the bases are (p, 
q)T and (−q, p)T, S± denotes the area of the sub-region in which 
ε = ε ±, and rqypxl iii ++= . 

Fig. 3 shows the errors with respect to the electric field 
strength that are obtained by the unfitted FE analyses for the 
simple situation (line y = 0.5 is the interface), where 
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The IH technique removes the error perfectly that arise around 
the unfitted interface when using a simple strategy (i.e., de-
termining the element-wise electric permittivity according to 
the position of the center of gravity for each triangle). 

More details of the technique as well as additional 
numerical results will appear in the full paper. 
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(a) Simple strategy 

 
(b) Interface homogenization (proposed technique) 

Fig. 3. Error in the electric field provided by unfitted FE analyses. 
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